期刊文献

Primitive Prime Divisors in the Critical Orbit of zd+c 收藏

在zd + c的关键轨道上的原始主要因子
摘要
We prove the finiteness of the Zsigmondy set associated to the critical orbit of f(z)=zd+c for rational values of c by uniformly bounding the size of the Zsigmondy set for all and all d≥2. We prove further that there exists an effectively computable bound M(c) on the largest element of the Zsigmondy set, and that, under mild additional hypotheses on c, we have M(c)≤3.
摘要译文
我们证明了Zsigmondy集的有限性与f(z)\x3d zd + c的关键轨道有关,对于c的有理值,通过统一地限制Zsigmondy集的大小, 2。我们进一步证明Zsigmondy集的最大元素存在一个有效可计算的边界M(c),并且在c上的温和的附加假设下,我们有M(c)≤3。
Holly Krieger. Primitive Prime Divisors in the Critical Orbit of zd+c[J]. International Mathematics Research Notices, 2013,2013(23): 5498–5525