期刊文献

Identification of the modulatory Ca2+-binding sites of acid-sensing ion channel 1a 收藏

鉴定调节性Ca 2+ - 酸性离子通道1a的结合位点
摘要
Acid-sensing ion channels (ASICs) are neuronal Na+-permeable ion channels activated by extracellular acidification. ASICs are involved in learning, fear sensing, pain sensation and neurodegeneration. Increasing the extracellular Ca2+ concentration decreases the H+ sensitivity of ASIC1a, suggesting a competition for binding sites between H+ and Ca2+ ions. Here, we predicted candidate residues for Ca2+ binding on ASIC1a, based on available structural information and our molecular dynamics simulations. With functional measurements, we identified several residues in cavities previously associated with pH-dependent gating, whose mutation reduced the modulation by extracellular Ca2+ of the ASIC1a pH dependence of activation and desensitization. This occurred probably owing to a disruption of Ca2+ binding. Our results link one of the two predicted Ca2+-binding sites in each ASIC1a acidic pocket to the modulation of channel activation. Mg2+ regulates ASICs in a similar way as does Ca2+. We show that Mg2+ shares some of the binding sites with Ca2+. Finally, we provide evidence that some of the ASIC1a Ca2+-binding sites are functionally conserved in the splice variant ASIC1b. Our identification of divalent cation-binding sites in ASIC1a shows how Ca2+ affects ASIC1a gating, elucidating a regulatory mechanism present in many ion channels.
摘要译文
酸性离子通道(ASIC)是神经元Na + - 可渗透的离子通道通过细胞外酸化激活。ASIC参与学习,恐惧感应,疼痛感和神经退行性。增加细胞外Ca 2+浓度降低了ASIC1A的H +敏感性,这表明H +和Ca 之间的结合位点竞争2+离子。在这里,我们预测了基于可用的结构信息和我们的分子动力学模拟,CA 2+结合了ASIC1A的候选残基。通过功能测量,我们确定了先前与pH依赖性门的腔体中的几个残基,它们的突变减少了ASIC1A pH依赖性和脱敏的细胞外Ca 2+的调节。这可能是由于CA 2+结合的破坏。我们的结果将每个ASIC1A酸性袋中的两个预测的CA 2+结合位点与通道激活的调节联系起来。mg 2+以与Ca 2+相似的方式调节ASIC。我们表明Mg 2+与CA 2+共享一些绑定位点。最后,我们提供了证据表明,某些ASIC1A CA 2+结合位点在剪接变体ASIC1B中是功能保守的。我们对ASIC1A中二价阳离子结合位点的鉴定显示了CA 2+如何影响ASIC1A门控,从而阐明了许多离子通道中存在的调节机制。
Ophélie Molton[1];Olivier Bignucolo[2];Stephan Kellenberger[3];Ophélie Molton[1];Olivier Bignucolo[2];Stephan Kellenberger[3]. Identification of the modulatory Ca2+-binding sites of acid-sensing ion channel 1a[J]. Open Biology, 2024,14(6)