期刊文献

Parts-based decomposition of spatial genomics data finds distinct tissue regions 收藏

空间基因组学数据的基于零件的分解发现不同的组织区域
摘要
Dimension reduction is a cornerstone of exploratory data analysis; however, traditional methods fail to preserve the spatial context of spatial genomics data. In this work, we develop a nonnegative spatial factorization (NSF) model that allows interpretable, parts-based decomposition of spatial single-cell count data. NSF allows label-free annotation of regions of interest in spatial genomics data and identifies genes and cells that can be used to define those regions.
摘要译文
降低是探索性数据分析的基石;但是,传统方法无法保留空间基因组学数据的空间环境。在这项工作中,我们开发了一个非负空间分解(NSF)模型,该模型允许可解释的,基于零件的空间单细胞计数数据。NSF允许对空间基因组数据中感兴趣的区域的无标签注释,并识别可用于定义这些区域的基因和细胞。
Parts-based decomposition of spatial genomics data finds distinct tissue regions[J]. Nature Methods, 2023,20(2): 187-188